Functional and biochemical evidence for G-protein-gated inwardly rectifying K+ (GIRK) channels composed of GIRK2 and GIRK3.

نویسندگان

  • T M Jelacic
  • M E Kennedy
  • K Wickman
  • D E Clapham
چکیده

G-protein-gated inwardly rectifying K(+) (GIRK) channels are widely expressed in the brain and are activated by at least eight different neurotransmitters. As K(+) channels, they drive the transmembrane potential toward E(K) when open and thus dampen neuronal excitability. There are four mammalian GIRK subunits (GIRK1-4 or Kir 3.1-4), with GIRK1 being the most unique of the four by possessing a long carboxyl-terminal tail. Early studies suggested that GIRK1 was an integral component of native GIRK channels. However, more recent data indicate that native channels can be either homo- or heterotetrameric complexes composed of several GIRK subunit combinations. The functional implications of subunit composition are poorly understood at present. The purpose of this study was to examine the functional and biochemical properties of GIRK channels formed by the co-assembly of GIRK2 and GIRK3, the most abundant GIRK subunits found in the mammalian brain. To examine the properties of a channel composed of these two subunits, we co-transfected GIRK2 and GIRK3 in CHO-K1 cells and assayed the cells for channel activity by patch clamp. The most significant difference between the putative GIRK2/GIRK3 heteromultimeric channel and GIRK1/GIRKx channels at the single channel level was an approximately 5-fold lower sensitivity to activation by Gbetagamma. Complexes containing only GIRK2 and GIRK3 could be immunoprecipitated from transfected cells and could be purified from native brain tissue. These data indicate that functional GIRK channels composed of GIRK2 and GIRK3 subunits exist in brain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell type-specific subunit composition of G protein-gated potassium channels in the cerebellum.

G protein-gated inwardly rectifying potassium (GIRK/Kir3) channels regulate cellular excitability and neurotransmission. In this study, we used biochemical and morphological techniques to analyze the cellular and subcellular distributions of GIRK channel subunits, as well as their interactions, in the mouse cerebellum. We found that GIRK1, GIRK2, and GIRK3 subunits co-precipitated with one anot...

متن کامل

G protein-gated inwardly rectifying potassium channels are targets for volatile anesthetics.

G protein-gated inwardly rectifying potassium channels (GIRKs) are a family of homo- and hetero-oligomeric K(+) channels composed of different subunits (GIRK1 to 4 in mammals). GIRK4 and GIRK1 are found mainly in the atrium, whereas neuronal cells predominantly express the GIRK1, GIRK2, and GIRK3 isoforms. When activated, GIRK channels slow the firing rate of atrial myocytes and neuronal cells....

متن کامل

Defective gamma-aminobutyric acid type B receptor-activated inwardly rectifying K+ currents in cerebellar granule cells isolated from weaver and Girk2 null mutant mice.

Stimulation of inhibitory neurotransmitter receptors, such as gamma-aminobutyric acid type B (GABAB) receptors, activates G protein-gated inwardly rectifying K+ channels (GIRK) which, in turn, influence membrane excitability. Seizure activity has been reported in a Girk2 null mutant mouse lacking GIRK2 channels but showing normal cerebellar development as well as in the weaver mouse, which has ...

متن کامل

Absence and rescue of morphine withdrawal in GIRK/Kir3 knock-out mice.

Although morphine induces both analgesia and dependence through mu-opioid receptors (MORs), the respective contributions of the intracellular effectors engaged by MORs remain unknown. To examine the contribution of G-protein-gated inwardly rectifying K(+) (GIRK, Kir3) channels to morphine dependence and analgesia, we quantified naloxone-precipitated withdrawal behavior and morphine analgesia us...

متن کامل

Pii: S0378-1119(01)00884-8

Cardiac and neuronal G protein-gated potassium (KG) channels are activated by neurotransmitters such as acetylcholine, opioids, and dopamine. KG channel activation leads to an inhibition of synaptic transmission. KG channels are tetrameric complexes formed by assembly of G protein-gated, inwardly-rectifying potassium (K) channel (GIRK) subunits. Four mammalian GIRK subunits (GIRK1–4) have been ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 275 46  شماره 

صفحات  -

تاریخ انتشار 2000